Verify that the divergence Theorem is true for the vector field \mathbf{F} on the region E.

1) $\mathbf{F}(x, y, z)=3 x \mathbf{i}+x y \mathbf{j}+2 x z \mathbf{k}, E$ is the cube bounded by the planes $x=0, x=1, y=0, y=1, z=0$, and $z=1$.
2) $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+x y \mathbf{j}+z \mathbf{k}, E$ is the solid bounded by the paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane.

Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, that is, calculate the flux of \mathbf{F} across S.
3) $\mathbf{F}(x, y, z)=e^{x} \sin y \mathbf{i}+e^{x} \cos y \mathbf{j}+y z^{2} \mathbf{k}, S$ is the surface of the box bounded by the planes $x=0, x=1, y=0$, $y=1, z=0$, and $z=2$.

2
4) $\mathbf{F}(x, y, z)=3 x y^{2} \mathbf{i}+x e^{z} \mathbf{j}+z^{3} \mathbf{k}, S$ is the surface of the solid bounded by the cylinder $y^{2}+z^{2}=1$ and the planes $x=-1$ and $x=2$.
$\frac{9 \pi}{2}$
5) $\mathbf{F}(x, y, z)=x^{2} y \mathbf{i}+x y^{2} \mathbf{j}+2 x y z \mathbf{k}, S$ is the surface of the tetrahedron bounded by the planes $x=0, y=0, z=0$, and $x+2 y+z=2$.
6) $\mathbf{F}(x, y, z)=\left(x^{3}+y \sin z\right) \mathbf{i}+\left(y^{3}+z \sin x\right) \mathbf{j}+3 z \mathbf{k}, S$ is the surface of the solid bounded by the hemispheres $z=\sqrt{4-x^{2}-y^{2}}, z=\sqrt{1-x^{2}-y^{2}}$ and the plane $z=0$.
$\frac{194}{5} \pi$

